336. The Conductance of Solutions in which the Solvent Molecule is "Large." Part V.* Solutions in Dialkyl Alkylphosphonates.

By C. M. FRENCH and P. B. HART.

Conductances of four quaternary ammonium picrates in three dialkyl alkylphosphonates at 15°, 25°, 45°, and 65° have been measured in the concentration range 10⁻²-10⁻⁶N. Limiting equivalent conductances and ion-pair dissociation constants have been estimated for all except two systems. Shedlovsky plots failed to show linearity in these two cases. In a number of respects the conductometric behaviour of solutions in phosphonate esters is found to resemble that in phosphoric acid esters, and anomalies have again been observed. A qualitative theory is advanced to account for certain effects in terms of the formation of an "atmosphere" of oriented solvent dipoles round the solute ions.

IN 1939, Elliot and Fuoss¹ commenced work on conductance relations in solutions where, because of the large size of its molecules, the solvent can no longer be regarded as a homogeneous continuum whose structure may be ignored except insofar as it determines its viscosity and dielectric constant. This work was extended in earlier papers in the present series.²⁻⁵ All investigations have revealed abnormalities in such properties as ionic mobilities and ion-pair dissociation constants in these systems which are not amenable to the treatment applied to classical systems. To obtain more results in an attempt to assess the influence of various structural features of large solvent molecules on conductivity, measurements have been made in dilute solutions of four quaternary ammonium picrates of gradually increasing size, in three dialkyl alkylphosphonates, again of varying size, and at several temperatures. The results are now presented.

EXPERIMENTAL

The larger conductances were measured with the apparatus described earlier² except for the replacement of the telephone used previously for detection of current, in conjunction with the Gambrell bridge, by a single-beam cathode-ray oscilloscope, Model 2300, made by Industrial Electronics Ltd. This oscilloscope was used as a vertical deflection amplifier. Solvent conductances and those of the more dilute and therefore poorly conducting solutions in di-(2-ethylhexyl) 2-ethylhexylphosphonate were measured by means of the Schering bridge.

Bright platinum electrodes were employed when polarisation was undectable, but very lightly platinised electrodes were essential for solutions in diethyl ethylphosphonate where the concentrated solutions were subject to polarisation if bright platinum electrodes were used, but where dilute solutions gave the same results irrespective of the nature of the platinum electrodes.

A solvent correction was always applied, and consisted of subtraction of the specific conductance of the solvent from that of the solution. This correction varied in magnitude from approximately 0.01% of the solution conductance for the most concentrated solutions, to 2%for the most dilute.

Measurements of the constants of the cells with bright platinum electrodes (which are generally to be preferred for organic solutions in view chiefly of the possibility that platinised electrodes might catalyse an otherwise negligible undetected reaction in the cell solution) and with potassium chloride⁶ or benzoic acid⁷ revealed the occurrence of small but significant polarisation errors. Accordingly, the conventional two-electrode parallel plate cells were calibrated by an intercomparison method, those with platinised electrodes first being standardised with potassium chloride and with benzoic acid, and then used for the measurement

- ¹ Elliot and Fuoss, J. Amer. Chem. Soc., 1939, 61, 294.
- ² French and Singer, J., 1956, 1424.
 ³ French and Singer, J., 1956, 2428.

- ⁴ French and Muggleton, J., 1957, 5064.
 ⁵ French, Hart, and Muggleton, J., 1959, 3582.
 ⁶ Jones and Bradshaw, J. Amer. Chem. Soc., 1933, 55, 1780.
 ⁷ Ives and Sames, J., 1943, 511.

^{*} Part IV, J., 1959, 3582.

of the resistance of dilute solutions of some tetra-alkylammonium picrates in dibutyl butylphosphonate which seemed to be unaffected by the platinum black. These solutions were then taken as secondary standards for the calibration of cells with bright electrodes. The constant of the three-electrode cell was calculated from the capacitance measured on the Schering bridge, by using the relation 8

Capacitance = 8.842×10^{-14} /(cell constant)

The constants for the various cells used were as follows:

- (I) Two-electrode parallel plate cells
 - (a) Platinised electrodes: (1) 0.1167, (2) 0.06971, (3) 0.03932
 - (b) Bright electrodes: (1) 0.2360, (2) 0.05075, (3) 0.02510, (4) 0.008200
- (II) Three-electrode cell: 6.657×10^{-4} .

Dielectric constants were measured by the resonance method and with the apparatus described earlier.5

The quaternary ammonium picrates were prepared by interaction between recrystallised "AnalaR" picric acid and the appropriate quaternary ammonium hydroxide, itself prepared (except for tetraethylammonium hydroxide, which was commercially available) from the tertiary amine and alkyl iodide via the corresponding quaternary ammonium iodide. The m. p.s of the final picrates, after recrystallisation from water for the two lower homologues, and from ethyl acetate for the two higher ones, were as follows: tetraethylammonium 256° (lit., 255.8°, 256.0° 10); tetra-n-propylammonium 115.8° (agreeing closely with the more recent literature value, 116.0°,¹¹ cf. 120.0°¹²); tetra-n-butylammonium 89° (lit., 89°,¹³ 89.5°¹⁴); tetra-n-pentylammonium 73-73.5° (lit., 73°, 15 73-74° 16).

The three dialkyl alkylphosphonates used as solvents were obtained from the Virginia-Carolina Chemical Corp. and were purified as follows. The two lower homologues were first distilled to remove low-boiling impurities, and then fractionated. They were next refluxed for some hours over activated alumina, and finally distilled. Because of the observed thermal

TABLE 1. Physical data for solvents.

Property	15°	25°	45°	65°	Property	15°	25°	45°	65°
(I) Diethyl eth 1.4148 ¹⁸).	ylphospl	nonate: 1	B. p. 54°/0	0•3 mm.;	$n_{\rm D}^{17.5}$ 1.4165 (lit	., b. p. (32°/2 mm.;	$16a n_{\rm D}^{18}$	1·4172, ¹⁷
η (cp.) d (g./ml.)	$1.627 \\ 1.026$	1∙ 33 0 1∙019	$0.9689 \\ 1.004$	$0.7431 \\ 0.9880$	$arepsilon$ κ $ imes$ 10^8	11·00 35	$10.57 \\ 57$	9·86 7—9	9·17 8—9
(II) Dibutyl bu 1·4310).	utylphos _l	phonate:	B. p. 104	4°/0·1 mn	n.; $n_{\rm D}^{20}$ 1.4330 (1	it., ¹⁷ b.	p. 12712	28°/2·5 m	m.; n _D ²⁰
$\eta \ (cP.) \ d \ (g./ml.) \ d$	4∙368 0∙9520	$3.173 \\ 0.9436$	$2.061 \\ 0.9281$	$1.623 \\ 0.9108$	$arepsilon$ $\kappa imes 10^9$	$\begin{array}{c} 6\cdot 96 \\ 0\cdot 8-2 \end{array}$	6·76 1·13·2	6·36 1·45·3	$6.01 \\ 29$
(III) Di-(2-eth 161°/0·25	ylhexyl) mm.; n _D	2-ethylhe 20 1.4480	exylphosp).	honate:	B. p. 155°/0·1 m	m.; <i>n</i> _D ¹	^{7.5} 1·4489	(lit.,17 b.	p. 160—
η (CP.) d (g./ml.)	$ \begin{array}{r} 18 \cdot 31 \\ 0 \cdot 9126 \end{array} $	$11.98 \\ 0.9052$	$6.000 \\ 0.8912$	3.609 0.8770	$arepsilon$ $\kappa imes 10^{11}$	4·35 3·6—9	$4.27 \\ 2-8$	4·09 5—17	$3 \cdot 94$ 12-26
 Fuoss an Walden, Walden and Taylor a Taylor a Cox, Kra Mead, Fu 	d Kraus, Ulich, an and Ulich nd Kraus Ulich, an aus, and uoss, and	J. Amer nd Loun, n, Z. phy s, J. Ame nd Birr, J. Fuoss, T Kraus,	r. Chem. S Z. phys. s. Chem., er. Chem. Z. phys. C rans. Far Trans. Fa	Soc., 19 33 Chem., 19 1923, 106 Soc., 194 Chem., 192 aday Soc. raday Soc.	, 55 , 3614. 24, 114 , 275. 3, 49. 7, 69 , 1731. 27, 130 , 495, 515. , 1935, 31 , 749. 2. 1936, 32 , 594.				

- ¹⁵ Vernon and Masterson, J. Amer. Chem. Soc., 1942, 64, 2822.

- ¹⁶ Tucker and Kraus, J. Amer. Chem. Soc., 1947, 69, 454.
 ^{16a} Ford-Moore and Williams, J., 1947, 1465.
 ¹⁷ "Dialkyl Alkyl Phosphonates," Virginia-Carolina Chemicals Corp., 1953.
- ¹⁸ Arbuzov and Vinogradova, Doklady Akad. Nauk S.S.S.R., Otdel khim. Nauk, 1947, 459.

instability of higher phosphonates, the di-(2-ethylhexyl)-2-ethylhexylphosphonate was purified simply by a number of successive, slow distillations, generous head and tail fractions being discarded each time. The physical constants for the three solvents are given in Table 1.

Results.—The variation of equivalent conductance with concentration and temperature in the 12 systems is recorded in Table 2.

		(I) J	n diethyl e	thylphosphonate	2:		
1	5°	2	5°	4	5°	68	5°
$c \times 10^4$	λ						
(a) Tetraeth	ylammoniu	m picrate					
151.0	10.36	149.5	12.39	147.3	16.59	145.0	21.01
84.70	11.75	83.69	13.65	$82 \cdot 46$	18.34	81.14	$23 \cdot 40$
41.63	13.12	41.23	15.65	40.62	21.08	39.97	26.97
$32 \cdot 10$	13.27	32.66	15.87	$32 \cdot 18$	21.28	31.6 6	27.28
29.23	13.98	28.94	16.73	28.52	22.00	28.06	28.97
13.33	16.58	$13 \cdot 20$	19.88	13.01	26.96	12.80	34.30
12.72	16.51	12.60	19.77	12.41	26.62	12.22	34·3 5
8.911	17.96	8.824	21.53	8.695	29.27	8.556	37.68
4.210	20.52	4 ·169	24.72	4.107	33.71	4.042	$43 \cdot 40$
$2 \cdot 160$	22.57	$2 \cdot 139$	27.38	$2 \cdot 107$	37.52	2.074	48.45
0.7441	$25 \cdot 3$						
(b) Tetrapro	pylammoni	um picrate					
83.04	10.62	81.58	12.66	81.02	16.88	79.73	21.87
60.24	11.30	59.18	13.63	58.77	18.29	57.84	23.13
38.89	$12 \cdot 20$	38.20	14.71	37.94	19.76	37.34	25.31
7.744	17.29	7.608	20.95	7.556	28.35	7.434	36.40
1.959	21.69	1.925	26.21	1.912	35.71	1.881	46.34
1.487	$22 \cdot 56$	1.461	27.35	1.451	37.24	1.428	48.42
0.8513	23.94	0.8363	29.16	0.8306	39.77	0.8174	51.74
0.4423	25.37	0.4345	30.75	0.4312	41.83	0.4246	$55 \cdot 10$
0.1670	27.8	0.1642	33 ·6	0.1629	45.8	0.1604	60.29
(c) Tetrabut	ylammoniu	m picrate					
118.6	9.511	117.8	11.38	116.0	15.35	114.2	19.67
109.6	9.725	108.9	11.58	107.2	15.37	105.6	19.12
$53 \cdot 47$	11.14	$53 \cdot 10$	13.28	52.32	17.95	51.49	22.94
29.72	12.72	29.52	15.23	29.10	20.62	28.62	26.47
20.72	13.56	20.58	16.26	20.27	21.96	19.95	27.81
5.849	17.68	5.809	$21 \cdot 16$	5.724	28.90	5.633	37.37
$4 \cdot 217$	18.81	4.188	22.55	4.132	30.73	4.060	39.88
1.634	21.62	1.623	26.06	1.599	35.70	1.574	46.27
1.104	$22 \cdot 92$	1.097	27.49	1.070	38.00	1.063	49.03
0.3629	24.33	0.5589	29.22	0.5563	40·40	0.5423	52.78
(d) Tetraper	itylammoni	um picrate					
85.92	9.750	85.69	11.66	84.20	15.77	82.90	20.14
72.74	10.08	72.03	12.07	70.97	16.26	69.84	20.93
14.44	14.13	14.37	16.90	14.14	$22 \cdot 92$	13.94	29.34
9.880	15.53	9.784	18.61	9.640	$25 \cdot 19$	9.487	32.49
5.339	17.43	5.318	20.80	$5 \cdot 231$	28.38	5.151	36.48
$2 \cdot 245$	20.20	$2 \cdot 223$	$24 \cdot 30$	$2 \cdot 191$	$33 \cdot 81$	2.156	42.95
1.053	22.26	1.048	26.54	1.031	37.48	1.012	$47 \cdot 42$

TABLE 2. Equivalent conductivity (λ) at concentration c.

(II) In dibutyl butylphosphonate:

(a) Tetraethy	lammoniur	n picrate					
120.1	0.4409	119.0	0.5856	117.0	0.9393	114.9	1.377
36.76	0.4997	36.43	0.6643	35.83	1.069	35.17	1.574
9.510	0.764	9.425	1.018	9.271	1.644	9.098	2.375
3.414	1.121	3.384	1.527	3.328	2.462	3.26 6	3.622
1.071	1.911	1.061	2.556	1.044	4.106	1.025	6.001
0.2346	3.58	0.2325	4.065	0.2287	7.591	0.2244	11.15
0.07102	5.60	0.07039	7.473	0.06924	12.09	0.06794	17.21

French and Hart: The Conductance of Solutions in

		TA	BLE $2.$ (Continued.)			
15°		25°		45°		65°	
$c \times 10^4$	λ	$c \times 10^4$	λ	$c \times 10^4$	λ	$c \times 10^4$	λ
(b) Tetraprop	vlammoniur	n picrate					
00.20	0.6099	08.51	0.8010	96.88	1.274	95.09	1.851
99.39 37.81	0.6784	37.48	0.8973	36.86	1.429	36.18	2.082
18-81	0.8315	18.64	1.100	18.34	1.752	18.00	$\frac{1}{2} \cdot 541$
10.14	1.025	10.05	1.350	9.884	2.156	9.700	3.146
8.622	1.075	8.545	1.428	8.405	2.255	8.248	3.292
2.546	1.719	2.523	2.285	2.482	3.618	2.435	5.195
2.157	1.858	$2 \cdot 138$	2.459	$2 \cdot 103$	3.917	2.064	5.581
0.6874	2.873	0.6812	3.802	0.6701	6.060	0.6576	8.733
0.5456	3.182	0.5407	4.195	0.5319	6.655	0.5220	9.720
0.3129	3.876	0.3101	5.118	0.3021	8.168	0.2994	11.87
0.1368	5.172	0.1358	6.795	0.1334	10.76	0.1309	15.60
0.1062	5.536	0.1052	7.34	0.1035	11.58	0.1016	16.86
(c) Tetrabuty	lammonium	picrate					
117.5	0.6708	116.4	0.8857	114.5	1.407	112.4	2.045
85.03	0.6902	84.27	0.9112	82.89	1.454	81·34	2.089
29.45	0.8127	29.18	1.085	28.71	1.726	28.17	2.500
8.421	1.262	8.346	1.663	8.209	2.642	8.056	3.832
6.146	1.412	6.092	1.861	5.992	2.959	5.880	4.281
4.583	1.542	4.542	2.039	4.468	3.250	4.385	4.693
4.390	1.572	4.351	2.075	4.279	3.295	4.200	4.774
2.252	2.007	2.231	2.653	2.195	4.383	2.154	6.058
0.8857	2.897	0.8778	3.840	0.1500	6.083	0.8473	8.821
0.1633	0·122 6.089	0.1018	0.780 8.082	0.1592	10.77	0.1202	15.52
0 00002	0 000	0 00020	0 002	0 000000	12 01	0 00220	10 11
(d) Tetrapent	ylammoniu	m picrate					
$72 \cdot 81$	0.6900	$72 \cdot 16$	0.9148	70.98	1.427	69.68	2.052
54.37	0.7181	53.89	0.9438	53.00	1.486	52.02	2.132
29.17	0.8200	28.91	1.089	28.44	1.702	27.91	2.448
9.844	1.164	9.756	1.510	9.597	2.420	9.488	3.429
8.624	1.222	8.548	1.011	8.408	2.038	8.251	3.007
2.009	1.903	2.080	2.002	2.043	3.023	2.490	0.717
2.040	2.089	2.030	2.520	1.040	5.567	1.091	7.949
0.7156	2.065	0.7094	4.047	0.6977	6.390	0.6847	9.286
0.3240	3 000 4∙04	0.3213	5.319	0.3160	8.396	0.3101	12.15
	1	(III) In di-(2-	ethylhexyl)	2-ethylhexylph	osphonate:		
$c~ imes~10^4$	$\lambda imes 10^{3}$	$c imes10^4$	$\lambda imes 10^3$	$c imes 10^4$	$\lambda imes 10^{3}$	$c imes10^4$	$\lambda imes 10^3$
(a) Tetraethy	lammonium	n picrate					
$24 \cdot 26$	3.974	24.06	7.085	23.68	16.89	$23 \cdot 29$	33 .90
14.53	4.195	14.40	7.430	14.17	17.79	13.95	35.51
8.910	4.850	8.842	8.376	8.702	20.98	8.560	42.17
4.977	5.935	4.935	10.48	4.862	25.68	4.781	51.32
3.752	6.668	3.722	11.91	3.002	28.71	3.002	20·23
0.0004	14.14	0.5169	20.00	0.5077	77.60	0.4006	129.4
0.3203	18.81	0.4269	31.72	0.4202	83.20	0.4330 0.4132	162.4
0 1002			01 12	• 1202	00 20	• 110-	101 1
(b) Tetraprop	ylammoniu	m picrate	0 500	0F 40	00.10	04.45	00.00
67.06	5.267	00.52	8.996	00.49	20.13	04.40	39.26
44.82	4.818	44.40	8·407	43.77	18.89	43.07	37.13
43.78	4.500	43.43	1.841 7.995	42.70	18.77	42.07	36.97
14.44	4.000	5.017	1-000 11.46	4.020	26.65	4.961	00'41 52.62
1.225	13.37	1.324	20.18	1.303	49.82	1.283	97.90
0.8401	15.28	0.8332	25.94	0.8204	63.86	0.8073	125.1
0.1666	36.56	0.1652	60.35	0.1627	153.9	0.1601	303.8
0.05674	64.66	0.05628	90.0	0.05541	239.0	0.05452	481 ·3

[1960]

		T	ABLE 2.	(Continued.))		
15	0	25	50	44	5°	65	0
$c \times 10^4$	$\lambda imes 10^3$						
(c) Tetrabut	ylammoniu	m picrate					
107.5	6.223	106.7	10.21	105.0	$23 \cdot 34$	103.3	44.58
80.50	5.445	69.62	8.485	78.62	20.47	77.37	39.59
70.18	5.130	31.94	7.733	68.54	19.63	67.45	37.93
$32 \cdot 20$	4.646	10.29	9.815	31.45	18.21	30.95	35.73
26.00	4.827	6.820	11.63	25.39	18.54	24.99	36.34
10.37	6.118	3.604	14.93	10.13	23.05	9.712	46.73
10.11	6.049	$2 \cdot 422$	18.08	9.869	$23 \cdot 27$	6.607	55.62
6.875	7.029	1.848	19.62	6.714	27.42	3.492	71.99
3.633	9.072	1.081	$24 \cdot 89$	3.548	35.38	$2 \cdot 346$	82.76
$2 \cdot 441$	10.84	0.6284	$32 \cdot 25$	2.384	41.31	0.6088	150.4
1.863	12.75	0.5890	$33 \cdot 10$	1.819	46.77	0.1345	298.4
1.090	15.68	0.1388	63.96	1.065	59.19	0.02694	588.3
0.6335	19.92	0.02781	138.9	0.6187	$75 \cdot 24$		
0.1399	38.70			0.5798	78.53		
0.02804	89.97			0.1366	147.2		
				0.02738	299.5		
(d) Tetrapen	tylammoniı	ım picrate					
115.9	6.280	114.9	10.24	$113 \cdot 2$	$23 \cdot 10$	111.4	53.96
56.62	4.498	50.18	7.417	49.43	17.16	48.65	33.16
47.26	4.281	46.88	7.035	46.15	15.52	45.42	31.53
23.14	4.478	25.44	7.280	25.05	15.96	24.65	30.38
8.542	8.866	8.339	11.10	8.258	$23 \cdot 21$	8.127	45.76
0.9266	17.78	0.9190	26.61	0.9048	63.63	0.8904	$125 \cdot 1$
0.3280	25.63	0.3848	39.55	0.3789	$94 \cdot 33$	0.3728	$189 \cdot 8$
0.1148	45.59	0.1139	68.69	0.1121	$181 \cdot 2$	0.1103	326.7

DISCUSSION

Earlier work in solvents having large molecules 2-5 has shown that some conductance phenomena are governed by the existence of a dipole "atmosphere" of solvent molecules round the solute ions. It is therefore pertinent to consider structural aspects which may affect the formation of such an atmosphere.

The mean radius (in Å) of each dialkyl alkylphosphonate as calculated from molarvolume data is diethyl ethyl- 3.95, dibutyl butyl- 4.71, and di-(2-ethylhexyl) 2-ethylhexylphosphonate, 5.67, Courtauld models indicating that the P=O group is probably prominent and not shielded to any significant extent by the alkyl chain. Furthermore, the dipole moments of these solvent molecules may be expected to be high; the moment of the P=O group has been extimated as 2.66 D^{21} with the negative end of the dipole on the oxygen atom, and the P-O-C and P-C bonds seem likely to increase the moment of the O·PO·O group. The dielectric constants of the phosphonates decrease both with temperature and with molecular size, increasing linearly at all temperatures with increasing

TABLE 3.	Energy	of	viscous	flow	$(E_{\mathbf{v}})$	in	kcal	.)
----------	--------	----	---------	------	--------------------	----	------	----

Solvent	15°	25°	45°	65°
DEEP	4.03	3.79	3 ·10	2.81
DBBP	5.54	5.26	3.51	2.17
DOOP	7.09	7.09	6.18	5.17

number of these polar molecules per unit volume, thus showing a "dilution effect" with increasing length of alkyl chain. Finally, the energy of viscous flow, E_v , was estimated graphically by using the relation $^{22} \eta = A \exp(E_v/kT)$, and the results are shown in Table 3.

 ¹⁹ Arbuzov and Arbuzova, J. Russ. Phys. Chem. Soc., 1930, 62, 1533.
 ²⁰ Kosolapoff, J. Amer. Chem. Soc., 1945, 67, 1180.
 ²¹ Hunter, Phillips, and Sutton, J., 1945, 146.
 ²² de Guzman, Anales real Soc. españ. Fíz. Quím., 1913, 11, 353.

As expected, E_v decreases both with decrease in molecular size, although not in direct proportion to it, and with increase in temperature, the latter effect indicating some breakdown in structure of the solvent as temperature increases. Of great interest is the relatively small value of E_v and of its temperature coefficient when compared with the corresponding quantities in strongly hydrogen-bonded solvents, and it would appear that any solvent association in the dialkyl alkylphosphonates is fairly loose.

One further factor of importance in ion-solvent interaction is the charge density at the surface of the ion. This must be low for the quaternary ammonium ions with their spherical symmetry and large radii, and especially low for the higher homologues used in the present work. [The radii (in Å) estimated by Robinson and Stokes ²³ from a Catalin model for the first ion, and from molar volumes for the higher homologues are: $(C_2H_5)_4N^+ 4.00$; $(C_3H_7)_4N^+ 4.52$; $(C_4H_9)_4N^+ 4.94$; $(C_5H_{11})_4N^+ 5.29$.]

The λ - c^{\ddagger} plots gave evidence of ion association in all three solvents, and the extent of curvature of these graphs increased very considerably with increase in size of the solvent molecules. Thus, in diethyl ethylphosphonate the plots became linear at low concentrations but with slope greater than theoretical; in the butyl compound moderately steep curves extended over the whole concentration range studied, while in di-(2-ethylhexyl) 2-ethylhexylphosphonate the curves were very steep and showed pronounced minima at about 5×10^{-3} N.

Plots of log λ against log c over a wide range of concentration for solutions in nonaqueous solvents may be expected to exhibit certain distinct regions, which can be explained in terms of ion association. In the most dilute region there is curvature towards the concentration axis, changing to a linear portion as concentration increases, owing to the effect of ion-pair formation. This is succeeded by an increasing curvature in the opposite direction and the ultimate appearance of a minimum as concentration increases still further and ion triplets are formed. Ultimately, in the most concentrated regions the curve rises again owing to the extensive formation of ion triplets and higher aggregates. Low solubility at higher concentrations, and uncertainties in the most dilute solutions due to the high proportion of the total conductance represented by that of the solvent, frequently prevent the whole curve from being observed in a single system. In the present work all regions of the curve can be examined by considering systems in the three solvents used. In general, as these solvents increase in size and the dielectric constant decreases, the whole curve is shifted towards lower concentrations. In diethyl ethylphosphonate only the initial curvature and linear portion were detectable, but in the butyl compound both this region and the subsequent curvature were observed, and although there was no minimum there were indications that this might be expected at about 10^{-2} 10^{-1} N, which is outside the range studied. The curvature was absent from the most dilute region of the four systems studied in the 2-ethylhexyl compound, but the other features including the minimum, were obtained.

Limiting equivalent conductances (accurate to within $\pm 0.5\%$ in diethyl ethyl- and dibutyl butyl-phosphonate), and ion-pair dissociation constants K, were obtained from Shedlovsky plots which were linear to a fairly high concentration $(1-2 \times 10^{-3}N)$ in the ethyl, and only slightly less in the butyl compound). In the 2-ethylhexyl compound Shedlovsky plots could not be obtained for tetraethyl- or tetrapropyl-ammonium picrate since the graphs were not linear over any part of the concentration range, and λ_0 and Kcould not be determined. For the other two solutes in this solvent linearity was obtained only in the most dilute region, the ion-atmosphere term was large, and the accuracy of the resulting value of λ_0 is only $\pm 5\%$, and of K is $\pm 15\%$. These quantities are given in Tables 4 and 5, together with the corresponding Walden products $\lambda_0\eta$ and ion-pair radii (the Bjerrum "a" parameter).

It will be observed that in the two smaller solvents λ_0 resembles the corresponding

²⁸ Robinson and Stokes, "Electrolyte Solutions," Butterworths, London, 1955.

TABLE 4. Limiting equivalent conductances (λ_0) and Walden products $(\lambda_0\eta)$.

	15	0	25	0	48	5°	68	5°
Solute	$\overline{\lambda_0}$	$\lambda_0 \eta$	λ_0	$\lambda_0 \eta$	$\overline{\lambda_0}$	$\lambda_0 \eta$	$\overline{\lambda_0}$	$\lambda_0 \eta$
(I) In diethyl ethyl	hosphona	ate						
Et_4NPi Pr_4NPi Bu_4NPi $Pent_4NPi$ \dots	29·3 28·4 27·8 27·0	$0.477 \\ 0.462 \\ 0.452 \\ 0.439$	38·1 34·7 33·4 32·5	$0.506 \\ 0.461 \\ 0.444 \\ 0.432$	50·5 46·3 45·9 47·0	0·489 0·448 0·444 0·455	$65 \cdot 3$ $62 \cdot 3$ $59 \cdot 8$ $59 \cdot 4$	0·485 0·463 0·444 0·444
(II) In dibutyl buty	lphospho	nate						
Et ₄ NPi Pr ₄ NPi Bu ₄ NPi Pent ₄ NPi	13·0 10·3 10·3 9·1	0·567 0·449 0·449 0·397	$17.5 \\ 15.3 \\ 13.7 \\ 12.4$	0·555 0·486 0·435 0·393	$23.9 \\ 22.5 \\ 21.5 \\ 19.4$	0.493 0.464 0.443 0.399	37.5 32.4 30.0 28.0	0.609 0.526 0.487 0.454
(III) In di-(2-ethylh	exyl) 2-et	thylhexylp	hosphonat	e				
Bu₄NPi Pent₄NPi	$0.165 \\ 0.245$	0·0302 0·0449	$0.513 \\ 0.595$	$0.0614 \\ 0.0712$	$0.74 \\ 1.12$	$0.0414 \\ 0.0672$	0·90 0·80	0·0278 0·0248

TABLE 5. Ion-pair dissociation constants $(K \times 10^6)$, radii "a" (Å), and Bjerrum critical parameter (q).

	14	5°	23	bĭ	4	5	6	5°
(I) In diethyl ethyl	phosphon	ate						
$10^{8}q$	26	·05	26	·20	26	·32	26	6.63
Solute	10 ⁶ K	a	106K		106K		1068	
Et_4NPi Pr_4NPi Bu_4NPi $Pent_4NPi$	$545 \\ 474 \\ 443 \\ 460$	6.9_{5} 6.6_{0} 6.4_{3} 6.5_{3}	$373 \\ 428 \\ 456 \\ 435$	6.1_7 6.4_2 6.5_8 6.4_7	412 564 436 337	$ \begin{array}{c} 6 \cdot 4_1 \\ 7 \cdot 2_4 \\ 6 \cdot 5_4 \\ 6 \cdot 0_2 \end{array} $	395 379 372 360	6·4 ₆ 6·3 ₉ 6·3 ₄ 6·2 ₈
(II) In dibutyl buty	lphospho	nate						
$10^{8}q$	41	·1,	40	·9 ₇	40	·81	40)·6 ₃
Et_4NPi Pr_4NPi Bu_4NPi $Pent_4NPi$	2.06 5.93 6.51 7.97	$5 \cdot 4_0$ $6 \cdot 0_0$ $6 \cdot 0_3$ $6 \cdot 1_9$	2.034.356.848.41	$5.3_{6} \\ 5.7_{7} \\ 6.0_{5} \\ 6.1_{8}$	2.68 5.23 6.61 8.45	5.4_8 5.8_4 5.9_7 6.1_5	2.38 $5.127.228.23$	5·3 ₉ 5·7 ₉ 6·0 ₂ 6·1 ₀
(III) In di-(2-ethylh	nexyl) 2-e	thylhexyl	phosphonat	te				
$10^{8}q$	65	-8 ₈	64	86	63	•4 ₆	61	•9 ₈
Bu₄NPi Pent₄NPi	1.03 0.429	9·26 8·51	$\overbrace{\begin{array}{c}2\cdot24\\0\cdot199\end{array}}^{2\cdot24}$	9.8 ₆ 7.8 ₀	$5.53 \\ 0.266$	10·7 ₈ 7·7 ₉	9·34 1·99	11.4 ₆ 9.1 ₅

values in other solvents of moderate size such as triethyl phosphate.⁵ These mobilities also decrease with increasing cation size, the greatest change usually being between the tetraethyl- and tetrabutyl-ammonium picrates as in the case of many other organic solvents. Correspondingly, the Walden products of all solutes in these two solvents are of normal magnitude, although in most cases slightly lower than the average values of 0.560, 0.471, and 0.449 for tetra-ethyl-, -propyl-, -butyl-, and -pentyl-ammonium picrates in conventional solvents. This might imply a slightly higher degree of solvation in the present solvents, although the negligible effect of temperature on $\lambda_0\eta$ indicates that solvation is not extensive. It should nevertheless be remarked that in dibutyl butyl-phosphonate there is an ultimate tendency above 45° for $\lambda_0\eta$ to increase; presumably at these temperatures thermal agitation becomes sufficiently vigorous to reduce or destroy the loose solvation.

Mobilities in di-(2-ethylhexyl) 2-ethylhexylphosphonate are abnormally low λ_0 for

the two solutes where it can be evaluated being of the order of 50 times smaller than in the other two phosphonates, but resembling closely the corresponding values in trioctyl phosphate.⁴ These data would seem to indicate, as in this earlier case, considerable solvation here by the molecules of di-(2-ethylhexyl) 2-ethylhexylphosphonate. This is consistent with the relatively large increase in mobility with increase in temperature, especially from 15° to 25°, and also with the increase in mobility with increase in cation size, since the smaller ions are usually more highly solvated. The low mobilities in this solvent lead in turn to abnormally low values of $\lambda_0 \eta$, and of particular interest is the pronounced maximum in the Walden product over the temperature range 15—65°, which again parallels experience with the phosphate esters.⁴

A survey of values of the Bjerrum "a" parameter shows these to be somewhat larger in the phosphonates, and especially so in the 2-ethylhexyl compound, than in more conventional solvents such as ethylidene chloride where the ion-pair radius of tetraethylammonium picrate, given by the data of Stern, Healey, and Martell²⁴ at 25° is 4.37 Å. They are, however, slightly smaller than the values calculated by Robinson and Stokes from models, and from molar volumes, and do closely resemble those in triethyl and trioctyl phosphates. Although the variation in "a" with cation size and with temperature is somewhat irregular even if small in diethyl ethylphosphonate, both the regular but small increase in "a" with increase in cation size in the butyl compound, and the virtual absence of temperature effect in this solvent, indicate that the ions are only very slightly solvated in dibutyl butylphosphonate. The quite marked increase in "a" on passing to the 2-ethylhexyl compound is further evidence of solvation in this solvent, and as expected, the larger tetrapentylammonium ion appears to be less solvated, and consequently the ion-pair radius is smaller than that of the tetrabutylammonium ion. The most obvious feature here is, however, the steady increase in "a" for tetrabutylammonium picrate in di-(2-ethylhexyl) 2-ethylhexylphosphonate as temperature increases, and although there is no ready explanation for this phenomenon it is noteworthy that it also occurs in triethyl⁵ and tritolyl⁴ phosphates.

An alternative approach to the variation in "a" for a given solute in different solvents is to regard it as a measure of the dissociation of the salt in various media (the effect of ion size will still be reflected in the "a" parameter since the smaller ions will tend to be more associated).

The values of the dissociation constants shown in Table 5 can be compared with the corresponding data for the systems studied earlier.²⁻⁴ Whereas in the smaller solvents in all series, K is of the order of 10^{-4} , this has decreased by a factor of approximately 100 in the larger solvents, the change occurring gradually with increasing size of the phthalic esters, but abruptly in passing from the ethyl to the butyl ester in the present series. It would be of interest, therefore, to examine this effect in more detail in the phosphoric esters. It has been noted 4 that the direction of change of K with cation size shows specific solvent effects, and this is further emphasised here where K consistently increases with increase in cation size in dibutyl butylphosphonate, and exhibits the reverse behaviour in the 2-ethylhexyl compound as far as the limited data indicate, and also in the ethyl compound at the highest temperatures. The appearance of a maximum value of K for the cations of intermediate size in diethyl ethylphosphonate at 25° and 45° and a minimum at 15° again emphasizes the complexity of the factors operating and producing specific effects in each particular system. This is further illustrated, as with the phosphates, by the temperature-dependence of K. No general relation covering solutions in all the " large " solvent molecule systems can yet be deduced, the variation in K depending on both solute and solvent, but increasing markedly in magnitude in the largest solvent of the present series.

In partial explanation of some of these phenomena it is reasonable to assume that solvent dipoles will interact with the electric field due to the ions. One can postulate a

²⁴ Stern, Healey, and Martell, J. Phys. Chem., 1951, 19, 1114.

"time-average dipole atmosphere" oriented in the field of an ion, which is dependent on the dipole moments of the solvent molecules and of the solute ion, the effective dielectric constant between ion and solvent dipole, the size of the ion, and the temperature. The presence of such a dipole atmosphere which represents a loose association of ion and solvent, could affect the mobility of the ion, since this structure will have to be broken down before the ion can flow. Secondly, it could affect the dissociation constant. If the ion-pair radius (4.37 Å) of tetraethylammonium picrate in ethylidene chloride at 25° ($\varepsilon = 10.00$), where the moment of the C–Cl bond is appreciably less than that of the P=O bond, is taken as a "normal" value for this solute, then the corresponding "normal" ion-pair dissociation constant at 25° in diethyl ethylphosphonate ($\varepsilon = 10.57$) would be some six times less than its experimental value.

Clearly, more data are required, and further work on this type of system is in progress.

DEPARTMENT OF CHEMISTRY, QUEEN MARY COLLEGE, London, E.1.

[Received, July 21st, 1959.]